Radboud Annals of Medical Students

RAMS

  • Home
  • News
    • Newsletter archive
  • About
    • RAMS
    • The Board
      • The General Board
        • The General Board (2021-2022)
        • Previous General Boards
      • The Editorial Board
        • The Editorial Board (2021-2022)
        • Previous Editorial Boards
    • The Supervisory Board
    • Reviewers and Editors
    • RAMS Committees
      • Symposium Committee
      • Masterclass Committee
  • Editions
    • 2021-2022
      • Twentieth Edition – September 2021
      • Twentyfirst Edition – December 2021
      • Twenty second Edition – March 2022
    • 2020-2021
      • Sixteenth edition – September 2020
      • Seventeenth edition – December 2020
      • Eighteenth edition – March 2021
      • Nineteenth Edition – June 2021
    • 2019-2020
      • Fourteenth edition – December 2019
      • Fifteenth edition – April 2020
      • Sixteenth edition – September 2020
    • 2018-2019
      • Eleventh Edition – September 2018
      • Twelfth Edition – January 2019
      • Thirteenth edition – May 2019
    • 2017 – 2018
      • Ninth Edition – November 2017
      • Tenth Edition – February 2018
    • 2016-2017
      • Sixth Edition – November 2016
      • Seventh Edition – March 2017
      • Eighth Edition – July 2017
    • 2015-2016
      • Third Edition – November 2015
      • Fourth Edition – March 2016
      • Fifth Edition – June 2016
    • 2014-2015
      • Pilot Edition – June 2014
      • First Edition – January 2015
      • Second Edition – June 2015
  • For Authors
    • Submit your Article
    • Research internship
  • For Supervisors
  • For Reviewers
  • Contact
  • Privacy policy
Je bent hier: Home / News / A new Sibling for CRISPR-Cas9: Cas13

A new Sibling for CRISPR-Cas9: Cas13

12 juli 2020 by Rams

Femke van Hout

The last decade marks the exciting revolution of CRISPR/Cas9 genome editing. While the revolution still continues with further development and refinement of the Cas9 systems, the first patients are already receiving Cas9-based treatments. The Cas9 enzyme is a so-called “RNA-guided DNA nuclease”. This means that Cas9 is directed by RNA, the guide RNA, to find and cut the complementary target DNA. As this cutting mechanism is very precise and programmable, Cas9 can in theory be used to change any DNA sequence. Many diseases could potentially be cured, including sickle cell disease, Duchenne muscular dystrophy and Huntington’s disease [1]. However, changing someone’s DNA could have severe implications regarding safety and ethics.

Luckily, it turns out that Cas9 has many siblings. Among them, is the recently discovered Cas13 that cuts RNA instead of DNA, making Cas13 an “RNA-guided RNA nuclease”[2]. This means that Cas13 can be used to cut RNA encoding for disease-causing proteins. In this way, the production of the disease-causing protein is prevented, without modifying the genome!

The first successes with Cas13 in human cell lines and mice have been published recently. In one important example, the mRNA encoding for the KRAS protein was targeted, which is often found to carry mutations in pancreatic cancer [3]. However, no drugs exist to target the KRAS protein. Cutting the KRAS mRNA would therefore be an effective strategy to prevent the production of the mutant protein. With guide RNAs that recognise the KRAS mRNA, Cas13 reduced the mRNA level with 94%. This resulted in the apoptosis of cancer cells in vitro and tumour shrinkage in the mice model.

The fact that Cas13 can prevent the production of disease-causing proteins, without changing the DNA is a very important advantage of Cas13 over Cas9. Moreover, Cas13 can be used to cure diseases for which there is no DNA to target. The vast majority of the viruses that cause human disease have an RNA genome. Apart from the retroviruses, these RNA viruses do not have any DNA intermediate in their replication cycle. Therefore, Cas9 cannot be used to target these viruses, while Cas13 can. With guide RNAs targeting influenza virus A and SARS-CoV-2, Cas13 has already been shown to effectively degrade the viral RNA, mitigating the viral infection in human cell lines [4]. All in all, the Cas13 enzyme has great potential for the treatment of various human genetic diseases, cancers and virus infections.

 

References:

[1] Wu, S.-S., et al. Advances in CRISPR/Cas-based Gene Therapy in Human Genetic Diseases. Theranostics 10, 4374-4382 (2020).

[2] Abudayyeh, O.O., et al. RNA targeting with CRISPR–Cas13. Nature 550, 280-284 (2017).

[3] Zhao, X., et al. A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer letters 431, 171-181 (2018).

[4] Blanchard, E.L., et al. Treating Influenza and SARS-CoV-2 via mRNA-encoded Cas13a. bioRxiv, 2020.2004.2024.060418 (2020).

Figure 1: Schematic representation of the Cas9 en Cas13 enzymes with guide RNA and target DNA/RNA, created with Biorender.com.

 

Categorie: News, Uncategorized

RAMS Newsletter

RAMS complies to the GDPR. By submitting your e-mail address to us you agree with our Privacy Policy.

Social Media


Sponsors & Partners

  • Brian Gardner
  • Lauren Mancke
  • Nathan Rice
  • Nick Croft
  • Rafal Tomal
  • Ron Rennick
© Copyright 2014 RADBOUD ANNALS OF MEDICAL STUDENTS · All Rights Reserved · Powered by PLatform11
Beheer cookie toestemming

Om de beste ervaringen te bieden, gebruiken wij technologieën zoals cookies om informatie over je apparaat op te slaan en/of te raadplegen. Door in te stemmen met deze technologieën kunnen wij gegevens zoals surfgedrag of unieke ID's op deze site verwerken. Als je geen toestemming geeft of uw toestemming intrekt, kan dit een nadelige invloed hebben op bepaalde functies en mogelijkheden.

Functioneel Altijd actief
De technische opslag of toegang is strikt noodzakelijk voor het legitieme doel het gebruik mogelijk te maken van een specifieke dienst waarom de abonnee of gebruiker uitdrukkelijk heeft gevraagd, of met als enig doel de uitvoering van de transmissie van een communicatie over een elektronisch communicatienetwerk.
Voorkeuren
De technische opslag of toegang is noodzakelijk voor het legitieme doel voorkeuren op te slaan die niet door de abonnee of gebruiker zijn aangevraagd.
Statistieken
De technische opslag of toegang die uitsluitend voor statistische doeleinden wordt gebruikt. De technische opslag of toegang die uitsluitend wordt gebruikt voor anonieme statistische doeleinden. Zonder dagvaarding, vrijwillige naleving door uw Internet Service Provider, of aanvullende gegevens van een derde partij, kan informatie die alleen voor dit doel wordt opgeslagen of opgehaald gewoonlijk niet worden gebruikt om je te identificeren.
Marketing
De technische opslag of toegang is nodig om gebruikersprofielen op te stellen voor het verzenden van reclame, of om de gebruiker op een website of over verschillende websites te volgen voor soortgelijke marketingdoeleinden.
Beheer opties Beheer diensten Beheer leveranciers Lees meer over deze doeleinden
Bekijk voorkeuren
{title} {title} {title}